

AN ISO 9001 : 2015 CERTIFIED COMPANY

NYLON GEAR COUPLINGS

BONNA-FLEX

Features : •

HASMUKHLAL & BROTHERS

- Easy and effortless assembly
- Contains high grade Nylon to connect gear hubs
- Low weight and Compact in Design
- Requires no lubrication
- Applies to broad range of application for machinery and hydraulics
- Easily accommodate for axial and angular misalignment
- Low noise operation

With our expertise in the field, we manufacture and supply superior quality product – Nylon Gear Coupling. The products at Bonnaflex are manufactured with high quality materials and advanced machines. We offer variety of specifications to fulfil customer requirements. We assure to supply quality- approved products at your doorstep stipulated timeline.

AN ISO 9001 : 2015 CERTIFIED COMPANY

BONNA-FIEX^{\mathcal{M}}

Size	Torque Rating (Nm)	Allow Speed RPM	Max Bore (mm)	Min Bore (mm)	Dimensions (Millimeters)								
					А	В	С	D	J	К	GAP		
M19-24T	30	11,800	19	8	48	54	25	32	37	8.5	4		
M28-34T	69	8,500	28	10	66	84	40	45	46	19.0	4		
M38-44T	127	6,700	38	14	83	84	40	58	48	18.0	4		
M48-50T	202	5,600	48	20	100	104	50	68	50	27.0	4		
M65-54T	436	4,000	65	25	140	144	70	96	72	36.0	4		

For various applications refer our selection guide for Bonnaflex Nylon Gear Coupling. Details required for selection are :

Interface Information, Diameters of coupling shafts, Distance between connecting shafts Drive RPM, Driving Power

;

;

Firstly calculate torque for coupling by given formula,

Torque (N-m) = x service factor	
---------------------------------	--

Torque (lb_f-ft) = —— x service factor

where, P = Power in kW N = Shaft RPM where, P = Power in hp N = Shaft RPM

Service Factor :

Even Load (8 hr/day) Low torque starting						
Uneven Load (8hr/day) Moderate Shock						
Heavy Shock (8hr/day) Full load Starting						

Co upl ing Siz e	Ele. Motor Frame Size	3000 RPM (2 Pole)		1500 RPM (4 Pole)		1000 RPM (6 Pole)		750 RPM (8 Pole)		Torque Rating	Peak Torque	Max	W
		kW	hp	kW	hp	kW	hp	kW	hp	(Nm)	Rating (Nm)	RP M	ht kg
19	Upto 80	0.75	1.1	0.55	0.75	0.37	0.55	-	-	3.5	7	300 0	0.3 5
28	90S - 112M	4.0	5.36	4.0	5.36	2.2	3.0	1.5	2.0	25.5	51	300 0	1.0 5
38	132S - 132M	5.5	7.5	7.5	10.0	4.0	5.36	3.0	4.0	47.8	96	300 0	1.8
48	180M - 180L	22.0	30.0	22.0	30.0	15.0	20.0	11.0	14.7	140	280	300 0	3.2
65	225S - 250M	55.0	75.0	55.0	75.0	37.0	50.0	30.0	40.0	350	700	300 0	8.9

For Torque in kg-m follow this : torque (kg-m) = 0.102 x torque (N-m)