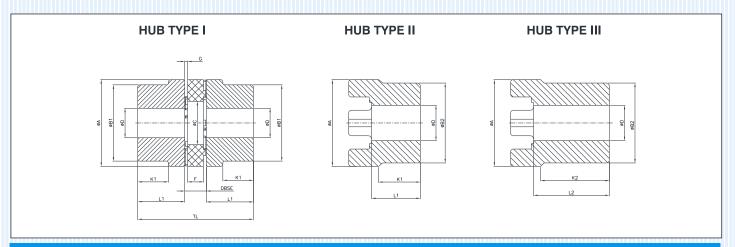


CURVED JAW COUPLINGS

TYPE - GR / BRRJ

CATALOGUE NO. C2-GR/BRRJ- NO 11



AN ISO 9001 : 2015 CERTIFIED COMPANY

- Features:
- Well balanced design
- Longer life-lesser maintenance
- Fail-Safe design

- Technical Details
- Rated torque ranges from 18 Nm to 65 Nm
- Rated power from 0.18 kW to 0.65 kW
- Max Speed 10600 rpm to 14000 rpm

TECHNICAL DATA

BRRJ - ALUMINIMUM (AL)*

Coupling	Coupling	kW @ 1	00 rpm	Torque Nm								# Assembly										
Size	Туре	Red	Yellow	Red	Speed RPM	РВ	Min.	Max.	ØA	ØB1	ØB2	øс	DBSE min.	F	L1	L2	G	TL	K1	K2	Weight (Kg.)	M.I. (Kg.m²)
19	I	0.18	0.1	18	14000		6	19	41	32	-	18	16	12	25	_	2	66	20	_	0.11	2.3 X 10 ⁵
19	Ш	0.10	0.1	10	14000		19	24	41	-	41	10	10	12	25	_		00			0.14	4.3 X 10 ⁵
24	1	0.65	0.35	62	10600	0600 0	9		56	40	-	27	18	14	30	30 -	2	78	24	_	0.24	9 X 10 ⁻⁵
	ll ll	0.00	0.00	02	10000	U	22	28		-	56		10	17	50			70	24		0.34	19 X 10 ⁻⁵
28	I	1.75	0.95	167	8500		10		66	48	-	30	20	15	35		2.5	90	28	_	0.39	20X 10 ⁻⁵
	Ш	1	0.00	107	0000		28	38		-	66						2.0				0.54	42 X 10 ⁻⁵
											BRRJ-(CAST	IRON (CI)*								
38	I			1				40		66	-				45	_	3	114	37	_	2.00	1.85 X 10 ⁻³
	П	3.47	1.9	332	7100	10	12	48	80	-	78	38	24	18					ļ.,		2.40	2.45 X 10 ³
	III														-	70		164	-	62	3.60	3.72 X 10 ³
42	1							45		75	-				50	-	_	126	40	-	3.20	4.1 X 10 ⁻³
		4.99	2.65	477	6000	12	14 5	55	95	-	94	46	26	20	_		3				3.80	5.9 X 10 ³
	III														-	75		176	-	65	5.50	8.54 X 10 ³
48	1	- 40		504			4-	52	405	85	-			0.4	56	6 -		140	45	-	4.96	7.4 X 10 ³
		5.49	3.1	524	5600	13	15	62	105	-	104	51	28	21	-	00	3.5	400		-00	5.45	9.9 X 10 ³
-	III							-00		-00						80		188	-	69	7.51	13.6 X 10 ³
55	1	7.27	4.1	694	4750	18	20	60	120	98 -	60 30	30	22	22 65	- /	4	160	52	-	6.60	12.3 X 10 ⁻³	
	III							74		-	118				_	90		210	_	77	7.50 10.20	23.7X 10 ³
-	1111							70		115						90		210	-	77	10.20	24.5 X 10 ⁻³
65	ı II	10.19	6.25	973	4250	20	22	-70	135	113	-	68	35	26	75	-	4.5	185	61	-	11.50	27.8 X 10 ³
	III	10.19	0.23	3/3	4230	20	~~	80	100	-	133	00	55	20	_	100	4.5	235	_	86	15.00	36.3 X 10 ³
	1									135	_					100		200	_	- 00	16.00	54 X 10 ³
75	<u> </u>	20.73	12.8	1980	3550	28	30		160	100		80	40	30	85	-	5	210	69	-	18.20	61.4 X 10 ⁻³
	III	20.70	12.0	1000		20		95	100	-	158	00	=		-	110	J	260	_	84	21.20	71.5 X 10°
	"							97		160	_					113		200		<u> </u>	27,50	138 X 10 ⁻³
90	ı i	36.89	24	3523	2800	38	40		200			100	45	34	100	-	5.5	245	81	-	36.30	182 X 10 ⁻³
	III	00.00		0020			.0	110	_50	-	198	. 50	.	•	-	125	0.0	295	_	106	44.80	225 X 10 ⁻³
																0				. 30		

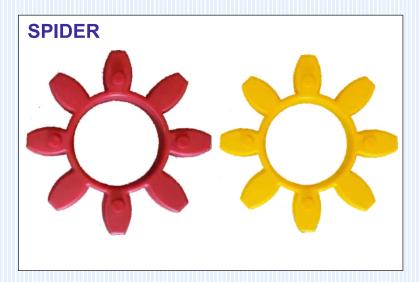
[#] Weight & Moment of Inertia (M.I.) of coupling assembly refer to maximum finish bore without keyway.

^{*} Alternative hub material available on request - Steel (Sizes 19 to 90), S. G. Iron (Sizes 38 to 90).

AN ISO 9001 : 2015 CERTIFIED COMPANY

BONNA-FLEX[™]

Selection Procedure:


- 1. Determine Application Nominal Torque (Nm) Tnom (Nm) = (kw x 9550/rpm)
- 2. Calculate application service factor using following charts Total service factor (SF) will be SF = SF1 x SF2 x SF3
- 3. Calculate Application Maximum Torque (Tmax)
 Tmax = Tnom X SF (Nm)
- 4. Select the proper spider showing Tnom greater than application nominal torque. Then select spider showing Tmax greater than application maximum torque. Select the higher of two.
- 5. Ensure that application rpm and max. bore requirements are less than or equal to selected coupling max. rpm and max. bore size otherwise select next size coupling.

For SF1, SF2, SF3 refer chart.

	SF1 - Application Service Factor										
			Prime Motor								
	Driven Machine / Example	Electric Motors	4 Cylinder or more	Less than 4 Cylinder							
a.	Uniform operation, no shocks.	1.5	2.0	2.5							
b.	Irregular operation, light shocks.	2.0	2.5	3.0							
C.	. Irregular operation, medium shocks.	2.5	3.0	3.5							
D.	Irregular operation, heavy shocks.	3.0	3.5	4.0							

SF2 - Application Service Factor for Temperature									
Temperature Range °C	< 30°C	30°C - 70°C	> 70°C						
SF2	1.0	1.5	2.0						

SF3 - Application Service Factor for starting frequency										
Starting frequency cycles / hour	< 100	100 - 500	> 500							
SF3	1.0	1.5	2.0							

TECHNICAL DATA - Polyurethane Spiders

	Red	(Std.)	Yellow			
Spider Size	Tnom (Nm)	T _{max} (Nm)	T _{nom} (Nm)	T _{max} (Nm)		
19	17	34	10	20		
24	60	120	35	70		
28	160	320	95	190		
38	325	650	190	380		
42	450	900	265	530		
48	525	1050	310	620		
55	685	1370	410	820		
65	940	1880	625	1250		
75	1920	3840	1280	2560		
90	3600	7200	2400	4800		
Hardness	95 Sh	ore A	92 Shore A			
Temperature	- 40°C to 90°C					

MISALIGNMENT DATA											
Size	19	24	28	38	42	48	55	65	75	90	
Maximum axial displacement (mm)	1.6	1.8	2.0	2.2	2.3	3.0	3.0	3.5	3.5	4.5	
Maximum radial misalignment (mm)	0.15	0.20	0.20	0.25	0.30	0.35	0.35	0.40	0.45	0.50	
Maximum angular misalignment (Deg.)	0.80	0.80	0.80	0.90	0.90	1.0	1.0	1.0	1.1	1.1	

ORDER SEQUENCE	Coupling	Hub Type	Finish Bore	Spider	Hub		
	Size	(Driver / Driven)	(Driver / Driven)	Type	Material		
Example	RRJ-55	1 / 11	40 / 60	Red	CI		

All dimensions are in mm unless otherwise specified.

